Jacobs School of Engineering, UC San Diego

Photonic Systems Integration

Laboratory

 

 

Monocentric Multiscale Imaging

Monocentric multi-scale (MMS) lenses are a new approach to high-resolution wide-angle imaging, where a monocentric objective lens is shared by an array of identical rotationally symmetric secondary imagers that each acquire one overlapping segment of a mosaic. This allows gigapixel images to be computationally integrated from conventional image sensors and relatively simple optics. Here we describe the MMS design space, introducing constraints on image continuity and uniformity, and show how paraxial system analysis can provide both volume scaling and a systematic design methodology for MMS imagers. We provide the detailed design of a 120° field of viewimager (currently under construction) resolving 2 gigapixels at 41.5 μrad instantaneous field of view, and demonstrate reasonable agreement with the first-order scaling calculation.

In multiscale imagers a single objective lens is shared by multiple secondary optical systems, so that a high-resolution wide-angle image is acquired in overlapping fields sensed by multiple conventional focal planes. In the “AWARE2” 2 Gigapixel imager, F/2.4 optics cover a 120 degree field of view using a monocentric glass primary lens shared by 221 molded plastic subimagers, each with a 14 Megapixel focal plane. Such imagers can independently focus parts of the image field, allowing wide-angle imaging over relatively close and deep image fields. However, providing hundreds of independent mechanical focus adjustments has a significant system impact in terms of complexity, bulk, and cost. In this paper we explore the use of an electronically controlled liquid crystal lens for focus of multiscale imagers in general, and demonstrate use with the AWARE2 imager optics. The Lens Vector Auto Focus (LVAF) liquid crystal lens provides up to 5 diopters of optical power over a 2.2mm aperture diameter, the maximum currently available aperture. However, a custom lens using the same materials and basic structure can provide the 5 diopters power and 6.4 mm aperture required to obtain full resolution overlapping image fields in the AWARE2 imager. We characterize the LVAF lens and the optical performance of the LVAF lens in the current AWARE2 prototype, comparing the measured and optically modeled resolution, and demonstrating software control of focus from infinity to an 2m object distance.


Contact Lens Ray Trace

For more information on the camera prototypes click on the links below.

 

JOURNAL PUBLICATIONS:
E. Tremblay, D. Marks, D. Brady, and J. Ford, "Design and scaling of monocentric multiscale imagers," Appl. Opt. 51, 4691-4702 (2012).

CONFERENCE PUBLICATIONS:
Igor Stamenov ; Eric Tremblay ; Katherine A. Baker ; Paul McLaughlin ; Joseph E. Ford; Liquid crystal lens focusing in monocentric multiscale imagers
. Proc. SPIE 8486, Current Developments in Lens Design and Optical Engineering XIII, 84860V (October 11, 2012)

PRESENTATIONS:
Liquid crystal lens focusing in monocentric multiscale imagers